Danh mục bài viết

Khóa luận tốt nghiệp toán sơ cấp Sư Phạm Toán 48
Lời mở đầu
Trong bất đẳng thức cổ điển thì bất đẳng thức xoay vòng là một nội dung hay và
khó. Có những bất đẳng thức có dạng khá đơn giản nhưng phải mất hàng chục năm,
nhiều nhà toán học mới giải quyết được. Ví dụ như bất đẳng thức Shapiro được đặt
ra vào năm 1903 bởi Neishbitt.
Với 3 số không âm a, b, c chứng minh rằng:
a
b + c
+
b
c + a
+
c
a + b
≥
3
2
(đơn giản)
và dạng tổng quát:
Mở rộng với n số a
1
, a
2
, . . . , a
n
thì:
a
1
a
2
+ a
3
+
a
2
a
3
+ a
4
+ ··· +
a
n
a
1
+ a
2
≥
n
2
Khì nào đúng, khi nào sai.
Đến năm 1954 tức là sau 52 năm, Shapiro mới tổng kết lại giả thuyết này như
sau:
1) Bất đằng thức đúng với n lẻ ≤ 23
2) Bất đằng thức đúng với n chẵn ≤ 12
Còn lại sai.
Hoàn toàn tự nhiên ta thấy còn rất nhiều dạng bất đẳng thức xoay vòng khác
thì bất đẳng thức là gì, khi nào đúng, khi nào sai hoặc luôn luôn đúng. Trong bài luận
văn này chúng tôi xây dựng được một dạng bất đẳng thức xoay vòng tổng quát mà
các trường hợp riêng là những bài toán khó và rất khó có thể sử dụng trong những đề
thi học sinh giỏi.
Luận văn này gồm có 2 chương:
Chương 1: Bất đẳng thức xoay vòng (Trình bày những kết quả đã có về
các bài bất đẳng thức phân thức.)
Chương 2: Một dạng bất đẳng thức xoay vòng (Xây dựng bất đẳng thức
với các trường hợp đơn giản, tổng quát bài toán)
GV hướng dẫn: TS Nguyễn Vũ Lương 1 Sinh viên: Nguyễn Văn Cương